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Abstract. The paper presents and compares two ap-
proaches to design fault-tolerant evolvable hardware: 
one based on the fitness definition and the other based 
on the population statistics. The fitness approach de-
fines, in an explicit way, the faults that the component 
may encounter during its life time and evaluates the 
average behavior of the individuals. The population 
approach uses the implicit information of the population 
statistics accumulated by the genetic algorithm over 
many generations.  The paper presents experiments 
done using both approaches on a fine-grained CMOS 
Field Programmable Transistor Array (FPTA) archi-
tecture for the synthesis of a fault-tolerant XNOR digi-
tal circuit. Experiments show that the evolutionary 
algorithm is able to find a fault-tolerant design for the 
XNOR function that can recover functionality when lost 
due to not a-priori known faults, by finding new circuits 
configurations that circumvent the faults. Our prelimi-
nary experiments show that the population approach 
designs a fault-tolerant circuit with a better perform-
ance and in less computation than the fitness based 
approach.   

1. Introduction 

Long-term survivability of space systems, as required for 
example by outer solar system exploration and missions to 
comets and planets with severe environmental conditions, 
has recently been approached with new ideas, such as the 
use of biology-inspired mechanisms for hardware 
adaptation. The application of evolution-inspired 
formalisms to hardware design and self-configuration lead 
to the concept of evolvable hardware (EHW). In the narrow 
sense EHW refers to self-reconfiguration of electronic 
hardware by evolutionary/genetic reconfiguration 
mechanisms. In a broader sense EHW refers to various 
forms of hardware, from sensors and antennas to complete 
evolvable space systems that could adapt to changing 
environments and, moreover, increase their performance 
during the mission. 

EHW can bring one main benefit to spacecraft 
survivability by preserving existing functions, in conditions 
where hardware is subject to faults, aging, temperature 

drifts and radiation, etc. The fault-tolerant property is 
extremely important for electronic components used in the 
space and nuclear industry where the components are 
continuously subjected to ion radiation. As the limits of 
VLSI technology are pushed towards sub-micron levels in 
order to achieve higher levels of integration, devices 
become more vulnerable to radiation induced errors. These 
radiation induced erros can lead to system failure. One of 
the goals of the future electonics is to design radiation 
immune electronic components [20].  

We propose to produce electronic systems that are 
inherently insensitive to faults such as silicon defects by 
using evolution in hardware to design fault-tolerant or 
highly reliable systems. The evolution is even able to on-
line self-repair by changing the circuit configuration in 
short delay or off-line self-repair by pushing further the 
evolution and exploiting defective components as if they 
were working parts [15] [16]. This paper reports on 
experiments that illustrate how evolutionary algorithms, 
using two different approaches, can design fault-tolerant 
digital circuit and recover functionality when lost due to 
faults, by finding new circuit configurations that 
circumvent the faults immediately in hardware. 

A variety of circuits have been synthesized through 
evolutionary means. For example, Koza used Genetic 
Programming (GP) to grow an “embryonic” circuit to one 
that satisfies desired requirements [1]. This approach was 
used and extended for evolving a variety of circuits, 
including filters and computational circuits [2]. On-chip 
evolution was demonstrated for the first time by Higuchi 
[27]. Later Thompson [3] used an FPGA as the 
programmable device, and a Genetic Algorithm (GA) as 
the evolutionary mechanism and Kajitani [26] used a 
dedicated hardware integrating the GA computation and a 
reconfigrable hardware. More details on current work in 
evolvable hardware are found in [4], [5], [6], [7], [24]. 
More recently, evolutionary experiments were performed 
on Field Programmable Analog Arrays [18] and custom-
designed ASIC [11][25][28]. Evolutionary algorithms have 
also been used with success for designing fault-tolerant 
system, such as robotics [15][21] and recently also in 
electronics [16][23][22][29].  

This paper is organized as follows: Section 2 presents the 
fault tolerant principles and the evolutionary method to 
obtain fault-tolerant systems. Section 3 presents the FPTA 



concept and the experimental setup. Section 4 describes the 
fault tolerant experiments using a cascaded FPTAs to 
design a XNOR logical function. Section 5 presents some 
lessons learned from the experiments and section 6 
concludes the paper. 

2. Fault Tolerant Principles for Evolvable 
Hardware 

The definition of fault tolerance is simply that a fault in a 
component does not cause the overall system to 
malfunction [14]. The malfunction is in general a loss of 
service that can be total or partial as for example on a 
computer network. The characteristic of fault tolerance is 
not absolute. The question is one of degree: how much 
tolerance to faults is required varies from application to 
application. In our electronic experiment, the malfunction 
is calculated by the mean square error between a desired 
output DC characteristic and the actual output. 

Fault tolerant systems are evaluated by two criteria: their 
reliability and their availability. The reliability measures 
how long can the system operate before malfunctioning 
even in the presence of faulty components. The availability 
measures the expected proportion of time that the system 
will be available for use. In our experiment on electronic 
device, the reliability of the circuit is measured by 
evaluating the malfunction of the electronic device when 
injecting faults. The availability is measured by calculating 
the time needed by the evolution process to retrieve a 
satisfactory circuit design. 

Two principles for designing fault-tolerant systems can 
be applied for evolutionary design: redundancy and on-line 
repair. The redundancy concept is well understood: if part 
of a system fails, there is an "extra" or spare" that is able to 
operate in the place of the failed component such that the 
operation of the system is uninterrupted. The on-line repair 
imposes that the system with a failed component should be 
made unavailable as less as possible while the system is in 
service. These two principles can be applied to fault-
tolerant evolutionary design. First, redundancy is obtained 
by using a circuit with a large number of connections and 
elements (transistors). Second, the on-line repair is 
obtained by searching, in the population, for a correct 
circuit, or by running the GA during a limited number of 
generations.  

Two different approaches were proposed to build fault 
tolerant system using evolutionary algorithms: 
1. Fitness Based Fault-Tolerant Design: it consists of 

injecting during the evolutionary process, the faults 
known a-priori that may occur in the circuit during its 
life-time [19]. 

2. Population Based Fault-Tolerant Design: it consists of 
extracting from a population of evolved circuits, the in-

dividual which adequately performs a desired function-
ality in the presence of a fault and eventually continue 
the evolution to attain a performance equal to that before 
the fault occurred [16]. 

While in the population based approach no previous 
knowledge of the faults that may occur is assumed, the 
fitness based approach requires a-priori knowledge of the 
defects. We will show in this paper that the population 
fault-tolerant approach using the population statistics 
accumulated by the genetic algorithm performs better than 
the fitness fault-tolerant approach. In the following section 
we present the FPTA and the evolutionary platform on 
which we conduct the experiments. Then the e periments 
and their results are described. 

3. Test Bed for FPTA 
The idea of a programmable transistor array was 

introduced first in [11]. The FPTA cell is an array of 
transistors interconnected by programmable switches. The 
status of the switches (ON or OFF) determines a circuit 
topology and consequently a specific response. Thus, the 
topology can be considered as a function of switch states, 
and can be represented by a binary sequence, such as 
“1011…”, where by convention one can assign 1 to a 
switch turned ON and 0 to a switch turned OFF. The FPTA 
architecture allows the implementation of bigger circuits by 
cascading FPTA cells. To offer sufficient flexibility the 
module has all transistor terminals connected via switches 
to expansion terminals (except those connected to power 
and ground). Figure 1 illustrates an example of a FPTA 
cell consisting of 8 transistors and 24 programmable 
switches. In this example the transistors P1-P4 are PMOS 
and N5-N8 are NMOS. A test chip implementing the 
FPTA architecture was developed. The programmable 
switches were implemented with transistors, acting as 
simple T-gate switches. Each chip contains one FPTA 
module and was fabricated as a Tiny Chip through MOSIS, 
using 0.5-micron CMOS technology. The test board with 
four chips mounted on it is illustrated in Figure 3.  
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Figure 1. Module of the FPTA Cell 

An evolutionary design tool was developed to facilitate 
experiments in hardware evolution [17]. The tool 
illustrated in Figure 2 uses the public domain Parallel 
Genetic Algorithm package, PGAPack and an evovable 
hardware test bed built around LabView. An interface code 
links the GA with the hardware where potential designs 
are evaluated, while a GUI allows easy problem 
formulation and visualization of results. At each generation 
the GA produces a new population of binary chromosomes, 
which get converted into configuration bits for the 
reconfigurable devices. Configuration bits are further 
downloaded into the hardware device by LabView. Circuit 
evolutionary synthesis directly on the chip became possible 
at an expected accelerated pace of over two orders of 
magnitude compared to the simulation on a workstation 

Figure 2. Environment for evolutionary hardware design. 
 

4. Fault-Tolerant Experiments 

The aim of this experiment was to test and compare the 
reliability and availability of a circuit design obtained by 
respectively a population and a fitness based evolution. The 
experiment setup consists of two cascaded FPTAs each 
programmed by 24 internal swiches. The 2 FPTA are 
connected together by 6 external wires controlled by 6 
programmable switches (Figure 3). Each FPTA is 
connected through 4 programmable switches to two input 
voltages, one current bias and one output load. There are a 
total of 62 switches controlling the 2 cascaded FPTAs and 
representing the chromosome for the GA (Figure 4).  
 

 

Figure . 3. A test board with 2 cascaded FPTAs (The two FPTAs 
used in the experiment are on the left side of the picture) 

The experiment consisted of the evolutionary design of a 
XNOR logical function using two square wave voltage 
inputs, at frequency of 50Hz and 100Hz respectively 
(Figure 5). The fault tolerance test encompassed the 
introduction of six single faults on the external wires 
connecting the 2 FPTAs by imposing the switches to be 
ON (short fault) or OFF (cut fault). The evaluation 
function is the MSE between the output response of the 
circuit obtained by evolution and the ideal output signal of 
a XNOR logical function. 

The experiments used a Genetic Algorithm (GA) with 
the following parameters: population 200, tournament 
selection of size 10; uniform mutation probability: 0.04, 
uniform cross-over probability: 0.7, elite strategy: 10%, 
fitness function: mean square error. The GA obtained the 
XNOR response in 60 generations, taking 3 minutes. 

1. Population Fault-Tolerant Evolution 

Evolution started by randomly initiating the population 
chromosomes, which were transformed into connection 
patterns. These are downloaded into the chips and the 

 

Graphical 
User Interface 

PGAPACK 
Parallel 

Genetic Algorithm 

Evolutionary Design Environment

Genes 

Desired 
Data 

4 PTAs 
controlled by  

LabView 

 

Configuration 
Bits 

Hardware 
Execution 

Data 
from 
Data 

Acquisition 
Board 

Fitness of 
individual 

device/circuit 



output of the generated circuits was directly monitored and 
compared with the desired DC XNOR response. After 60 

generations a circuit that satisfied the requirements was 
found and is shown in Figure 6. 
 

 

Figure . 4. Cascaded FPTAs used to design a fault-tolerant  XNOR circuit with 62 switches. The 6 connections indicated by 
a circle are subjected to faults. (CUT: switch OFF: fault 0, fault 3, fault 5) (SHORT: switch ON: fault 1, fault 2, fault 4) 
 

 
 
Figure  5. Input Signal 1(100Hz), Input Signal 2 (50Hz) and the Output Signal of the XNOR circuit configuration. (X axis: 

0.25 msec/unit; switches: 1Volt/unit). 
 
 

Figure. 6. Best Circuit Design at Generation 60 

 



We inject five faults by cuting (set the switch OFF: 
fault0, fault3, fault5) or shorting (set the switch ON: fault1, 
fault2, fault4) one by one the external connections between 
the two FPTAs. Figure 7 shows that the best circuit 
configuration does not achieve the XNOR functionality for 
faults 2, 3, 4, 5. Looking in the population at generation 
60, we found mutants with better responses for faults 2 and 
5 as shown in figure 8 and 10. However we could not find 
mutants with acceptable performance for fault 3 and 4 
(figure 10). We then re-started the GA with the population 
of its last run evaluating the individuals under fault 3 and 
fault 4 conditions [15]. In case of fault 4, and starting with 
the last available population, it took half less generations 
(30 generations) to recover than when starting with a 
random population as shown on figure 9. In figure 10 we 
compare the performance of the best circuit and the 
mutants found for each fault. It illustrates that the 
population approach is able to find on-line a circuit 
configuration to resolve the faults.  

 
Figure. 7.  Output of the Best Circuit Configuration obtained by 
population based evolution when 6 faults are injected. (The re-
sponse are shifted in time in all the figures to enhance the illus-

tration) 
 
 
 
 
 
 
 
 
 
 
 

 

Figure. 8. Response of best performing mutants for each fault. 
Further evolution was needed to find a XNOR circuit for fault3 

and fault 4. 

Figure 9. Fitness through generation for Population based and 
Fitness based fault-tolerant approach. 

Fig. 10. Comparison between the Fitness of  the Best Circuit and 
Mutant Circuits obtained by a population based evolution. 
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2. Fitness based Fault-Tolerant Evolution 

In the fitness based fault-tolerant experiment, the 
chromosomes are evaluated in four different circuit states: 
one without fault, and three with a single fault. The three 
faults are fault 2 (switch ON), fault 3 (switch OFF) and 
fault 5 (switch OFF). The fitness of the chromosome is the 
average of the four evaluations. After 30 generations, the 
genetic algorithm finds a circuit that best satisfied the 
requirement (Figure 9). The circuit configuration is shown 
on Figure 11.  

We then inject six faults. As expected the circuit achieves 
the XNOR functionality for each of the three faults 
included explicitly into the fitness function (fault 2, fault 3, 
fault 5) (Figure 12). The circuit is also able to achieve the 
XNOR functionality with faults not included into the 
fitness function such as fault 0, fault 1 and fault 4 but with 
a lower performance for fault 0 (Figure 13). Finally we 
applied inverse faults to the best circuit configuration. It 
shows that the circuit configuration cannot achieve the 
XNOR functionality when fault 2 is inverse. 

 
 
 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Fault Fault 0 Fault 1 Fault-
Tolerant 2

Fault-
Tolerant 3

Fault 4 Fault-
Tolerant 5

Inverse
Fault 2

Inverse
Fault 3

Inverse
Fault 5

Fault Tolerant Circuit
Mutant

Figure 
13. Comparison between the fitness of best and mutant 

configuration obtained by a fitness based evolution. 
 

 
 
 

Figure  11.  Circuit Schematic of the best individual obtained by fitness based approach. 



Figure  12. Output of the best circuit configuration obtained by fitness based evolution when 9 faults are injected 
 

 

6. Lessons Learned 

We compared two approaches for designing a fault-
tolerant field programmable transistor array and we 
conclude from our preliminary experiments that the 
population approach offers the following advantages 
compared to the fitness approach. 
 
• The population approach builds circuits with a better 

performance in a no-fault situation than the circuit ob-
tained by the fitness approach, because, in the later 
case, the evolution is constrained by the faults imposed 
to the circuit. But the fitness approach has the advan-
tage of achieving a single circuit robust to multiple 
faults. 

 
• The population approach offers an on-line self-repair 

mechanism able to find circuit in the population with 
better performance than the circuits obtained by the 
fitness approach. Although the best circuit configura-
tion for a non-fault situation is not robust, the popula-
tion contains mutant configurations able to achieve the 
desire functionality with the faulty circuit. They even 
display a better performance than the best configura-
tion and mutants obtained by the fitness approach. 

 
• The population approach offers an off-line self-repair 

mechanism able to self-heal circuit in few more gen-
erations with better performance than the circuit ob-
tained by the fitness approach.  

 
• The population approach requires less computation than 

the fitness approach because in the later case the ge-
netic algorithm must evaluate the circuits with the 
faults. 

 
These experiments open the way for further investigation 

of the property of fault-tolerant evolutionary techniques 
applied to electronics such as the behavior of the fault-
tolerant system when arbitrary and large number of fauts 
are injected and the unavaibility time is limited. The 
methodoly can also be addressed by combining the 
population and the fitness approaches, or by including in a 
more explicit way redundancy in the system such as 
explored in the "embryological" development approach 
[13].  

8. Conclusion 

The paper demonstrates the power of evolutionary 
algorithms to design digital fault-tolerant circuit. It 
compares two methods to achieve fault-tolerant design one 
based on fitness and the other based on population.  It 
shows that although the classic fault-tolerant design 
approach is able to create a reliable circuit design by 
evaluating the behavior of the circuit when well known 
faults are injected during the evolutionary process, better 
circuit performance and in less computation time for a 
same fault-tolerant degree is achieved by allowing the 
evolutionary design process to be free of all faults 
constraints.  
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