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Design example
We want to design a robot for inspecting a Spac
Power satellite section.

• Walkers are preferred over free-flyers

• Mobility requirements:
• Move along long truss sections (longerons)
• Move between longerons of different orientations
• Out-of-plane motions and sensor positioning

30.5m
6.1m
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Design Challenges for Robo
• What kinematic configuration should be used?

• How big should the robot be? ~1m? 2m? 3m?

• What actuators (motors and gearheads)?

• How should the robot move? (Controller desig

• All of these factors are interdependent.
• Hard to predict all impacts of a single design variable

• Significant effort required to specify designs to
point that they can be evaluated.

• Critical design decisions are made early, on ba
least information
• Many limitations aren’t known until robot is undergoing test
• Most robot designs are one-offs; little or no time/money for 
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Overview
Darwin2K is an extensible system for robot confi
synthesis

• Distributed evolutionary algorithm

• Robot representation uses graph of paramete
modules

• Performance evaluation through task-specific
simulation

• Multiple performance constraints and objective

• Extensible software architecture
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System architecture
• Central synthesis engine ; multiple evaluato

• Dynamic libraries for task-specific modules, m
simulation algorithms

• Synthesis engine is independent of task and m
details

Synthesis
configurations

performance data

task-specific
library

Ev
tas

Engine

task
requirements

modules
metrics
task representation
controllers
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Parameterized Modules
Modules for bases (including mobile), joints, link
A rightAngleJoint :

Six parameters:
• motor selection
• gearhead selection
• material selection
• tube outer diameter
• tube wall thickness
• overall length

const -flag allows designe
parameter values

gearhead

length

diameter

material

wall thickness

Ẑ

motor

scaraElbow

Other modules:

link 2

link 1

c1

c2

connectors

irtYoke
and

balloonWheel

(3 joints)
prismaticTube

(2 telescoping joints)

(includes
motor + gearhead)
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Parameterized Module Configu
Graphs

• Robots represented as a directed, acyclic grap

• Connections include twist parameter and c

• Symmetry can be preserved through multiple
connections

Instantiation

Parameterized Module
Configuration Graph

Mechanis
(links and jo
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th = 0111

th = 1001

baabk:
Crossover Operators

Module Cr osso ver

Parameter Cr osso ver

length = 0001

length = 1111

leng

leng

crossover mas
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Mutation operators

insertion

deletion

replacement

parameter
mutation

attachment
mutation
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Multiple requirements and objec
Robot performance objectives and constraints ar
multidimensional.

• Kinematics: reachability
• Dynamics: response time
• Actuators: adequate torque and velocity
• Structural: low deflection, adequate safety factor
• Control: accuracy
• Feasibility: no collisions, no tip-over, task completion
• Mass, power, time, complexity, cost

Need to capture requirements and designer’s
understanding of their relative priorities.

• e.g. If the robot only completes 10% of a task,
usage is irrelevant
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Requirement Prioritization
RP tells the synthesizer which metrics to use for
selecting configurations. Rationale:

• If no configurations satisfy a requirement, then frequently u
corresponding metric for selection

• Don’t optimize low-priority requirements (power) until high p
requirements (task completion) are satisfied by many robot

• Adaptively set frequencies for each metric based on fractio
satisfying that metric.

• Designer gives an acceptance threshold and p
each requirement:

priority = 2   metric 0   threshold: == 100% // task completion
               metric 1   threshold: == 0 // # collisions

priority = 1   metric 2   threshold: < 3cm // error
               metric 3   threshold: < 1mm  // deflection

metric 4 threshold: < 50% // actuator satura

priority = 0   metric 5   threshold: none // time
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Truss Walker
• Restrict to 7 DOF, symmetric

designs

• Four requirements:
• task completion = 100%
• collisions = 0
• link deflection < 1mm
• continuous saturation < 80%

• Three objective functions:
• minimize mass
• minimize power
• minimize time

1 11

1 - walk along tru
2 - move to perpe
3 - move to anoth

rod
4 - move to back 
5 - move end effe

inspection pos
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Walker modules
• Five parameterized modules:

• Include gait parameters with each design:
• stride length, grasp approach vector, via point location and 

• Simple kernel  configuration

3 joint modules:

1 link
module

1 gripper
moduleinline elbow 90o
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s 12.3kg time 84.7s
eleration and velocity

 Power - 221 J
Synthesized walkers
Synthesizer produced a range of Pareto-optima
configurations of the feasible set

• All Pareto-optimal configurations in the feasible set are con
are never deleted

• Extreme (best in one metric) configurations sh
below

energy 255J time 77.2s masmass 18.6kg energy 1112J
thin, lightweight links low accpowerful actuators and stiff links

high acceleration and velocity

Lightest - 12.2kg LeastFastest - 55.2s
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Walker wrist kinematics
Evolved wrist structure completely eliminates se
collisions within each half of the arm

Useful, since controller doesn’t try to avoid self-
(controller bias)
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19.6s (vs. 19.8)
14 kg (vs. 18.6)

Fastest
Task Impact
What if the task is
only the walking
stage during
synthesis?

Hybrid lander/
walker 6.3kg (vs. 12.2kg) 38J (vs. 82J)

Lightest Least Energy

Robots are lighter and have
different wrist, but have wrist
self collisions when
evaluated on full task.
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1 leg on
75cm step
Hybrid Lander/Walker
• Determine feasibility of using legs for both walk

landing
• Requirements: max accel., structural safety, actuator satura
• Objectives: total mass, payload mass, stowed volume

• New design regime; no existing designs or rule

• Very expensive evaluation (90 sec. /design)

• Synthesized designs showed generality

v v

Training evaluations (2 of 4) Test (post-synthesis

Level terrain 30o slope Rough terrain
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Use synthesis to create optimized
designs in new application area
(inflatable-wheeled Mars rovers)

• No existing design rules or scaling laws in
domain

• Performance limits unknown

Extract design rules from space of
Pareto-optimal configurations

• e.g. Structural mass for a 6-wheeled rover is

Also perform configuration
synthesis and optimization for
rover to be built in 2002

K wheelbase( ) maxObstacleSize( ) payload mass( )2.2
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Challenges in Automated Design for Robo

• Significant domain expertise required to use s
• Task-specific control and evaluation code
• Task-specific modules

• Structural analysis, actuator models, geometry for each
• Can be hard to ensure adequate coverage in e

• Robots are usually general-purpose or reprogrammable
• Must carefully choose representative task used in evaluatio

• Evaluation through simulation requires a mean
controlling the robot
• Controller must be able to deal with 10K-100K different rob

• May not be any closed-form solutions
• Often trying to get very specific, highly constrained behavio

trajectory within 1mm)
• Optimal control is not generally solved problem, and delibe

extremely expensive
• Significant controller co-evolution is extremely expensive; s

w/ more CPU power
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Conclusions and Observatio
• Automated synthesis & optimization of robots 

feasible
• Most appropriate for configuration design (rather than conc

• Significant effort often required for new applica

• High dimensionality of robot performance lead
simulation complexity
• 95%+ of code and coding time is related to simulation, not 

optimization
• Indicates lack of maturity in existing robot simulation to

• Capturing all task requirements is crucial

• Planning/control during synthesis is still not ge
solved
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	Design example
	We want to design a robot for inspecting a Space Solar Power satellite section.
	• Walkers are preferred over free-flyers
	• Mobility requirements:
	• Move along long truss sections (longerons)
	• Move between longerons of different orientations
	• Out-of-plane motions and sensor positioning



	Design Challenges for Robotics
	• What kinematic configuration should be used?
	• How big should the robot be? ~1m? 2m? 3m?
	• What actuators (motors and gearheads)?
	• How should the robot move? (Controller design)
	• All of these factors are interdependent.
	• Hard to predict all impacts of a single design variable

	• Significant effort required to specify designs to the point that they can be evaluated.
	• Critical design decisions are made early, on basis of least information
	• Many limitations aren’t known until robot is undergoing testing
	• Most robot designs are one-offs; little or no time/money for iteration


	Overview
	Darwin2K is an extensible system for robot configuration synthesis
	• Distributed evolutionary algorithm
	• Robot representation uses graph of parameterized modules
	• Performance evaluation through task-specific simulation
	• Multiple performance constraints and objectives
	• Extensible software architecture


	System architecture
	• Central synthesis engine; multiple evaluators
	• Dynamic libraries for task-specific modules, metrics, simulation algorithms
	• Synthesis engine is independent of task and module details
	modules
	metrics
	task representation
	controllers


	Parameterized Modules
	Modules for bases (including mobile), joints, links, tools. A rightAngleJoint:
	Six parameters:
	const-flag allows designer to fix parameter values


	Parameterized Module Configuration Graphs
	• Robots represented as a directed, acyclic graph
	• Connections include twist parameter and const-flag
	• Symmetry can be preserved through multiple connections

	Crossover Operators
	Mutation operators
	Multiple requirements and objectives
	Robot performance objectives and constraints are highly multidimensional.
	• Kinematics: reachability
	• Dynamics: response time
	• Actuators: adequate torque and velocity
	• Structural: low deflection, adequate safety factor
	• Control: accuracy
	• Feasibility: no collisions, no tip-over, task completion
	• Mass, power, time, complexity, cost

	Need to capture requirements and designer’s understanding of their relative priorities.
	• e.g. If the robot only completes 10% of a task, power usage is irrelevant


	Requirement Prioritization
	RP tells the synthesizer which metrics to use for selecting configurations. Rationale:
	• If no configurations satisfy a requirement, then frequently use the corresponding metric for se...
	• Don’t optimize low-priority requirements (power) until high priority requirements (task complet...
	• Adaptively set frequencies for each metric based on fraction of population satisfying that metric.
	• Designer gives an acceptance threshold and priority to each requirement:


	Truss Walker
	• Restrict to 7 DOF, symmetric designs
	1 - walk along truss
	2 - move to perpendicular rod
	3 - move to another perpendicular �����rod
	4 - move to back of truss
	5 - move end effector to
	     inspection position

	• Four requirements:
	• task completion = 100%
	• collisions = 0
	• link deflection < 1mm
	• continuous saturation < 80%

	• Three objective functions:
	• minimize mass
	• minimize power
	• minimize time


	Walker modules
	• Five parameterized modules:
	• Include gait parameters with each design:
	• stride length, grasp approach vector, via point location and tolerance

	• Simple kernel configuration

	Synthesized walkers
	Synthesizer produced a range of Pareto-optimal configurations of the feasible set
	• All Pareto-optimal configurations in the feasible set are considered ‘best’ and are never deleted
	• Extreme (best in one metric) configurations shown below


	Walker wrist kinematics
	Evolved wrist structure completely eliminates self- collisions within each half of the arm
	Useful, since controller doesn’t try to avoid self-collision (controller bias)

	Task Impact
	What if the task is only the walking stage during synthesis?
	Hybrid lander/ walker

	Hybrid Lander/Walker
	• Determine feasibility of using legs for both walking and landing
	• Requirements: max accel., structural safety, actuator saturation, stability
	• Objectives: total mass, payload mass, stowed volume

	• New design regime; no existing designs or rules
	• Very expensive evaluation (90 sec. /design)
	• Synthesized designs showed generality

	Design Rules via Synthesis
	Use synthesis to create optimized designs in new application area (inflatable-wheeled Mars rovers)
	• No existing design rules or scaling laws in domain
	• Performance limits unknown

	Extract design rules from space of Pareto-optimal configurations
	• e.g. Structural mass for a 6-wheeled rover is

	Also perform configuration synthesis and optimization for rover to be built in 2002

	Challenges in Automated Design for Robotics
	• Significant domain expertise required to use system
	• Task-specific control and evaluation code
	• Task-specific modules
	• Structural analysis, actuator models, geometry for each new model


	• Can be hard to ensure adequate coverage in evaluation
	• Robots are usually general-purpose or reprogrammable
	• Must carefully choose representative task used in evaluation

	• Evaluation through simulation requires a means of controlling the robot
	• Controller must be able to deal with 10K-100K different robot designs
	• May not be any closed-form solutions

	• Often trying to get very specific, highly constrained behavior (e.g. follow trajectory within 1mm)
	• Optimal control is not generally solved problem, and deliberative planning is extremely expensive
	• Significant controller co-evolution is extremely expensive; should be feasible w/ more CPU power


	Conclusions and Observations
	• Automated synthesis & optimization of robots is feasible
	• Most appropriate for configuration design (rather than conceptual or detailed)

	• Significant effort often required for new applications
	• High dimensionality of robot performance leads to simulation complexity
	• 95%+ of code and coding time is related to simulation, not synthesis/ optimization
	• Indicates lack of maturity in existing robot simulation tools


	• Capturing all task requirements is crucial
	• Planning/control during synthesis is still not generally solved


