
On Routine Implementation of
Virtual Evolvable Devices
Using COMBO6

Lukáš Sekanina1 and Šte�pán Friedl2

1) Faculty of Information Technology
Brno University of Technology, Czech Republic

2) CESNET z.s.p.o., Brno, Czech Republic

http://www.fit.vutbr.cz/~sekanina

NASA EH 2004

http://www.fit.vutbr.cz/~sekanina
http://www.go2pdf.com

Objectives

• to propose a uniform design philosophy
for designing digital evolvable systems
for a reasonable class of problems

• to demonstrate the approach
– by implementation of some complete

evolvable systems in FPGAs
– by evolving non-trivial digital circuits using

these systems in a reasonable time

http://www.go2pdf.com

Assumptions, considerations, etc.
• Evolvable systems are application-specific,

including application-specific
– genetic operators and fitness function
– architecture of the reconfigurable device (accurate size,

granularity, reconfiguration system, etc.) ⇒ ASIC?
• Larger and larger FPGAs will be available ⇒

– complete hardware implementation preferred
– components as reusable IP cores
– dynamic reconfiguration is useful

• Problems: internal reconfiguration required
– ICAP in Virtex II?
– virtual reconfigurable circuits

http://www.go2pdf.com

Virtual Reconfigurable Circuit

0001101001111001111100001110000101001101

0001101001111001111100001110000101001101
FPGA configuration port

internal
configuration
unit

Configuration memory

Routing logic

Virtual reconfigurable circuit
configuration port

Configurable
Blocks

http://www.go2pdf.com

Virtual Reconfigurable Circuit (2)

• advantages
– its internal structure is application-specific
– its configuration subsystem is application-specific
– fast/partial/parallel reconfiguration in a few clocks
– described at the level of HDL, i.e. independent of

FPGA
• disadvantages

– implementation cost

http://www.go2pdf.com

environment

fitness value

Uniform View on (Evolvable) Systems

component

component

component

component

component

component
component

Evolvable component
RD + EA

http://www.go2pdf.com

Evolvable System in an FPGA

0001101001111001111100001110000101001101

0001101001111001111100001110000101001101
FPGA configuration port

evolvable component

virtual
reconfigurable

circuit

genetic
unit

configuration

fitness
calculation

unit

fitness value

PCI interface

environment

http://www.go2pdf.com

CAD
for

EHWDescription of
VRC

Description of
genetic unit

Description of
fitness calc.

Problem
specification

VRC
designer

GA
designer

Fitness
designer

Performance
test

Performance
test

Synthesis

Constraints, FPGA type,
libraries etc.

Complete evolvable
system on FPGA

VHDL

SW simulator

C++

Not fully automatic!

http://www.go2pdf.com

VRC
designer

#for VHDL
ROW: 10; #number of rows
COL: 8; #number of columns
BIT: 1; #number of bits
CFB: 80; #number of CFBs
INPUT: 6; #number of inputs
NUM-FCI: 8; #number of functions in CFB
#variables for function, the last is the output variable
VAR-FCI: {"a","b","c"};
#number outputs {subrange} {output CFB}
OUTPUT: 6 {70..79} {72,73,74,75,76,77};

#defined functions in C code (a, b - input variables) (c - output
variable)
FCE:0: {ALL}, {

{0: "c = a;" :0 : VHDL: " c <= a;" },
{1: "c = b;" :1 : VHDL: " c <= b;" },
{2: "c = a && b;" :0: 1 : VHDL: " c <= a and b;" },
{3: "c = a || b;" :0: 1 : VHDL: " c <= a or b;" },
{4: "c = !a;" :0 : VHDL: " c <= not a;" },
{5: "c = !b;" :1 : VHDL: " c <= not b;" },
{6: "c = !(a && b);":0: 1 : VHDL: " c <= not (a and b);" },
{7: "c = a ^^ b;" :0: 1 : VHDL: " c <= a xor b;" }

};

VRC
designer

Description of VRC
(templates:
pipelined array,
mALU-CPU, etc.)

Synthesizable VHDL code of VRC

C++ simulator of VRC

Similar tools are developed for genetic unit and fitness calculation.
Interface and controller are reusable.

http://www.go2pdf.com

Case study: Evolvable System for Designing
Small Combinational Circuits (3b-multipliers)

VRC:
6 inputs/6 outputs
8x10 programmable elements
880 bit configuration

testing the truth table

EA:
4 individuals per 880 bits
fitness value - 16 bits
mutation only

http://www.go2pdf.com

Virtual
Reconfigurable

Circuit

pipelined processing

pipelined
reconfiguration – one
column per a clock

http://www.go2pdf.com

Implementation of a single PE

X
Y
X and Y
X or Y
Not X
Not Y
X nand Y
X xor Y

FF

X

FF FF FF FF

4

FF FF FF FF FF FF FF

4 3

Preceding
column of
PEs
or primary
inputs

CLK

11 Flip Flops

y

00 01 11 11 11 1
configuration

http://www.go2pdf.com

Genetic Unit

Interface to environment (fitness calculation)

Interface
to VRC

http://www.go2pdf.com

Fitness calculation unit
for the evolutionary design of a 3-bit multiplier

• two 3-bit operands, 6-bit output
• all input combinations applied
• we are looking for 6*26 = 384 output bits
• fitness value = the number of correct

output bits in the truth table
• pipelined calculation

http://www.go2pdf.com

Target platform

COMBO6 card created in the Liberouter project -
development of an IPv6 and IPv4 router.
FPGA Virtex XC2V3000, CAM, DRAM, PCI interface, etc.

www.liberouter.org

http://www.go2pdf.com
http://www.liberouter.org

Design and Synthesis
• VHDL design (ModelSim)
• LeonardoSpectrum for synthesis (XC2V3000bf957)
• Max. 93.5 MHz (not optimized yet), evolution

performed at 50MHz only
• 403,372 equivalent gates utilized
• PCI interface used to read results, initialize random

number generator (LFSR), etc.

Resource Used Avail. Utilization
IOs 41 684 5.99%
Function Generators 5207 28672 18.16%
CLB Slices 2604 14336 18.16%
Dffs or Latches 3193 30724 10.39%
Block RAMs 4 96 4.17%

http://www.go2pdf.com

Evolutionary Design of Pipelined
3b-multipliers: Results

• 1600 runs, a correct solution discovered in all cases
• 5,377,900 generations on average, i.e. 31 sec. (50

MHz)
• ~ 15.5 sec. for 100 MHz
• the shortest run - 497,217 generations; the longest run -

48 million generations
• speedup (average)

– 69 x (against SW simulator - Pentium@ 200MHz)
– 28 x (against SW simulator - Pentium IV@ 2.6 GHz)

http://www.go2pdf.com

Evolved 3bit Pipelined Multiplier

Some elements are not utilized.

http://www.go2pdf.com

Comments
• We were not interested in minimizing the number

of elements used in the evolved multipliers.
• The obtained speedup is not impressive – in case

of analog EHW chips, the speedup about 4+
orders of magnitude is common (e.g. JPL’s FPTA)
– reason: It is possible to create a really fast SW simulator

for the 3bit multiplier problem.
• It is not difficult to modify the HW in order to work

as an adaptive image filter operating with 8-bit
pixels. Then the speedup will be more interesting.

• Functional-level EHW is suitable for this approach.

http://www.go2pdf.com

On Routine Designing of
Evolvable Systems on FPGAs

• We developed
– a SW which is able to generate VHDL code of VRC from a

high-level specification automatically
– a generic genetic unit in VHDL
– a generic fitness function in VHDL
– a reusable controller independent of an application

• Complete application-specific evolvable system can
be developed, simulated, synthesized and so created
in a few hours.

• The evolvable system is available at the level of
VHDL source code (e.g. as an IP core).

• The evolvable system can be realized on an arbitrary
FPGA of sufficient capacity – EHW has become
independent of a target platform!

http://www.go2pdf.com

Evolution of 4x3-bit multipliers
A new evolvable system designed
and synthesized.

VRC:
10x10 programmable elements
1300 configuration bits

Results:
10 multipliers evolved out of 19 runs
after 265 million generations on
average.

The problem of the 4x3-bit multiplier
design is hard.

http://www.go2pdf.com

Evolvable Computing in an FPGA

0001101001111001111100001110000101001101

0001101001111001111100001110000101001101
FPGA configuration port

Co
mp
on
en
tli
bra
ryMicroBlaze

Evolvable
Filter

(EA+prog. array)

PCI

FilterMPEG FFT

Evolvable
predictor

http://www.go2pdf.com

Conclusions
• a methodology was proposed for designing

application-specific evolvable systems at the
level of HDL

• evolutionary design of multipliers is not scalable;
the proposed system is only to demonstrate the
approach

• future work: to prove the concept in a real-world
industrial application where autonomous
adaptation is needed at the hardware level

http://www.go2pdf.com

