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Objectives

• to propose a uniform design philosophy
for designing digital evolvable systems
for a reasonable class of problems

• to demonstrate the approach
– by implementation of some complete

evolvable systems in FPGAs
– by evolving non-trivial digital circuits using

these systems in a reasonable time
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Assumptions, considerations, etc.
• Evolvable systems are application-specific,

including application-specific
– genetic operators and fitness function
– architecture of the reconfigurable device (accurate size,

granularity, reconfiguration system, etc.) ⇒ ASIC?
• Larger and larger FPGAs will be available ⇒

– complete hardware implementation preferred
– components as reusable IP cores
– dynamic reconfiguration is useful

• Problems: internal reconfiguration required
– ICAP in Virtex II?
– virtual reconfigurable circuits
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Virtual Reconfigurable Circuit
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Virtual Reconfigurable Circuit (2)

• advantages
– its internal structure is application-specific
– its configuration subsystem is application-specific
– fast/partial/parallel reconfiguration in a few clocks
– described at the level of HDL, i.e. independent of

FPGA
• disadvantages

– implementation cost
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Evolvable System in an FPGA
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VRC
designer

#for VHDL
ROW: 10; #number of rows
COL: 8; #number of columns
BIT: 1; #number of bits
CFB: 80; #number of CFBs
INPUT: 6; #number of inputs
NUM-FCI: 8; #number of functions in CFB
#variables for function, the last is the output variable
VAR-FCI: {"a","b","c"};
#number outputs {subrange} {output CFB}
OUTPUT: 6 {70..79} {72,73,74,75,76,77};

#defined functions in C code (a, b - input variables) (c - output
variable)
FCE:0: {ALL}, {

{0: "c = a;" :0 : VHDL: " c <= a;" },
{1: "c = b;" :1 : VHDL: " c <= b;" },
{2: "c = a && b;" :0: 1 : VHDL: " c <= a and b;" },
{3: "c = a || b;" :0: 1 : VHDL: " c <= a or b;" },
{4: "c = !a;" :0 : VHDL: " c <= not a;" },
{5: "c = !b;" :1 : VHDL: " c <= not b;" },
{6: "c = !(a && b);":0: 1 : VHDL: " c <= not (a and b);" },
{7: "c = a ^^ b;" :0: 1 : VHDL: " c <= a xor b;" }

};

VRC
designer

Description of VRC
(templates:
pipelined array,
mALU-CPU, etc.)

Synthesizable VHDL code of VRC

C++ simulator of VRC

Similar tools are developed for genetic unit and fitness calculation.
Interface and controller are reusable.
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Case study: Evolvable System for Designing
Small Combinational Circuits (3b-multipliers)

VRC:
6 inputs/6 outputs
8x10 programmable elements
880 bit configuration

testing the truth table

EA:
4 individuals per 880 bits
fitness value - 16 bits
mutation only
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Implementation of a single PE
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Genetic Unit

Interface to environment (fitness calculation)
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Fitness calculation unit
for the evolutionary design of a 3-bit multiplier

• two 3-bit operands, 6-bit output
• all input combinations applied
• we are looking for 6*26 = 384 output bits
• fitness value = the number of correct

output bits in the truth table
• pipelined calculation
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Target platform

COMBO6 card created in the Liberouter project -
development of an IPv6 and IPv4 router.
FPGA Virtex XC2V3000, CAM, DRAM, PCI interface, etc.

www.liberouter.org
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Design and Synthesis
• VHDL design (ModelSim)
• LeonardoSpectrum for synthesis (XC2V3000bf957)
• Max. 93.5 MHz (not optimized yet), evolution

performed at 50MHz only
• 403,372 equivalent gates utilized
• PCI interface used to read results, initialize random

number generator (LFSR), etc.

Resource Used Avail. Utilization
IOs 41 684 5.99%
Function Generators 5207 28672 18.16%
CLB Slices 2604 14336 18.16%
Dffs or Latches 3193 30724 10.39%
Block RAMs 4 96 4.17%
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Evolutionary Design of Pipelined
3b-multipliers: Results

• 1600 runs, a correct solution discovered in all cases
• 5,377,900 generations on average, i.e. 31 sec. (50

MHz)
• ~ 15.5 sec. for 100 MHz
• the shortest run - 497,217 generations; the longest run -

48 million generations
• speedup (average)

– 69 x (against SW simulator - Pentium@ 200MHz)
– 28 x (against SW simulator - Pentium IV@ 2.6 GHz)
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Evolved 3bit Pipelined Multiplier

Some elements are not utilized.
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Comments
• We were not interested in minimizing the number

of elements used in the evolved multipliers.
• The obtained speedup is not impressive – in case

of analog EHW chips, the speedup about 4+
orders of magnitude is common (e.g. JPL’s FPTA)
– reason: It is possible to create a really fast SW simulator

for the 3bit multiplier problem.
• It is not difficult to modify the HW in order to work

as an adaptive image filter operating with 8-bit
pixels. Then the speedup will be more interesting.

• Functional-level EHW is suitable for this approach.
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On Routine Designing of
Evolvable Systems on FPGAs

• We developed
– a SW which is able to generate VHDL code of VRC from a

high-level specification automatically
– a generic genetic unit in VHDL
– a generic fitness function in VHDL
– a reusable controller independent of an application

• Complete application-specific evolvable system can
be developed, simulated, synthesized and so created
in a few hours.

• The evolvable system is available at the level of
VHDL source code (e.g. as an IP core).

• The evolvable system can be realized on an arbitrary
FPGA of sufficient capacity – EHW has become
independent of a target platform!
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Evolution of 4x3-bit multipliers
A new evolvable system designed
and synthesized.

VRC:
10x10 programmable elements
1300 configuration bits

Results:
10 multipliers evolved out of 19 runs
after 265 million generations on
average.

The problem of the 4x3-bit multiplier
design is hard.
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Evolvable Computing in an FPGA
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Conclusions
• a methodology was proposed for designing

application-specific evolvable systems at the
level of HDL

• evolutionary design of multipliers is not scalable;
the proposed system is only to demonstrate the
approach

• future work: to prove the concept in a real-world
industrial application where autonomous
adaptation is needed at the hardware level
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